Difference between revisions of "Book Reviews, Editorials, Point of View"

From Nanopedia
Jump to: navigation, search
(Nanoscience in Food and Agriculture 4)
(Nanotechnology for Enhancing In-Situ Recovery and Upgrading of Oil and Gas Processing)
Line 4: Line 4:
 
== <span style="color:crimson;"><span style="color:crimson;">'''Nanotechnology for Enhancing In-Situ Recovery and Upgrading of Oil and Gas Processing'''</span> ==
 
== <span style="color:crimson;"><span style="color:crimson;">'''Nanotechnology for Enhancing In-Situ Recovery and Upgrading of Oil and Gas Processing'''</span> ==
 
<div class="book_box">Nassar, Nashaat N., Cortés, Farid B. (Eds.), Springer, 2018.[[File: Book3.png|right|200px]]
 
<div class="book_box">Nassar, Nashaat N., Cortés, Farid B. (Eds.), Springer, 2018.[[File: Book3.png|right|200px]]
 +
 +
This book assesses the current application of nanotechnology in oil and gas industries and explores new research directions in this frontier field. It outlines the theory and practical challenges of the nanoparticle colloidal behavior in oil matrixes and aqueous solutions, the interactions between rock and nanofluid, and the surface phenomena relevant to the application of this technology. The book also describes the transport behavior of nanoparticles in oil/sand media for in-situ upgrading and recovery of heavy oil. Currently, the main objectives of applying nanoscale materials in oil and gas industries are the remediation of formation damage, the improvement of energy efficiency, the abatement of environmental footprints and the increment of recovery factors of oil reservoirs, to name a few. The book consists of six chapters with contributions by leading experts in the topics of fabrication methods, opportunities and challenges in the oil & gas industry, modeling and application of nanofluids in the field and environmental applications of nanoparticles. The growing demand for oil has led to the need to exploit unconventional oil resources, such as heavy and extra-heavy crude oil. However, in the current context, upgrading and recovery of heavy oil are highly energy and water intensive, which consequently results in environmental impacts. Therefore, it is necessary to search for new ideas and alternatives in the field of in-situ and ex-situ upgrading and recovery to improve current technologies and make them both environmentally sound and cost-effective. Research conducted by the authors and numerous other researchers has shown that nanoparticle technology could be successfully employed for enhancing the upgrading and recovery of heavy oil with cost-effective and environmentally friendly approaches. Examples on the applications of nanoparticles in heavy oil include the adsorption, oxidation, and gasification/cracking of asphaltenes, a problematic constituent present in heavy oils; in-situ upgrading of the Athabasca bitumen by multi-metallic in-situ prepared nanocatalysts; the inhibition of precipitation and deposition; and the enhanced perdurability against asphaltene damage in oil sands porous media by injection of nanofluids; sequestration of oil from spilled emulsions by nanoparticle supported alumina etc.
  
 
== <span style="color:crimson;"><span style="color:crimson;">'''Nanoscience in Food and Agriculture 4'''</span> ==
 
== <span style="color:crimson;"><span style="color:crimson;">'''Nanoscience in Food and Agriculture 4'''</span> ==

Revision as of 17:56, 5 March 2017

1 Nanotechnology for Enhancing In-Situ Recovery and Upgrading of Oil and Gas Processing

Nassar, Nashaat N., Cortés, Farid B. (Eds.), Springer, 2018.
Book3.png

This book assesses the current application of nanotechnology in oil and gas industries and explores new research directions in this frontier field. It outlines the theory and practical challenges of the nanoparticle colloidal behavior in oil matrixes and aqueous solutions, the interactions between rock and nanofluid, and the surface phenomena relevant to the application of this technology. The book also describes the transport behavior of nanoparticles in oil/sand media for in-situ upgrading and recovery of heavy oil. Currently, the main objectives of applying nanoscale materials in oil and gas industries are the remediation of formation damage, the improvement of energy efficiency, the abatement of environmental footprints and the increment of recovery factors of oil reservoirs, to name a few. The book consists of six chapters with contributions by leading experts in the topics of fabrication methods, opportunities and challenges in the oil & gas industry, modeling and application of nanofluids in the field and environmental applications of nanoparticles. The growing demand for oil has led to the need to exploit unconventional oil resources, such as heavy and extra-heavy crude oil. However, in the current context, upgrading and recovery of heavy oil are highly energy and water intensive, which consequently results in environmental impacts. Therefore, it is necessary to search for new ideas and alternatives in the field of in-situ and ex-situ upgrading and recovery to improve current technologies and make them both environmentally sound and cost-effective. Research conducted by the authors and numerous other researchers has shown that nanoparticle technology could be successfully employed for enhancing the upgrading and recovery of heavy oil with cost-effective and environmentally friendly approaches. Examples on the applications of nanoparticles in heavy oil include the adsorption, oxidation, and gasification/cracking of asphaltenes, a problematic constituent present in heavy oils; in-situ upgrading of the Athabasca bitumen by multi-metallic in-situ prepared nanocatalysts; the inhibition of precipitation and deposition; and the enhanced perdurability against asphaltene damage in oil sands porous media by injection of nanofluids; sequestration of oil from spilled emulsions by nanoparticle supported alumina etc.

2 Nanoscience in Food and Agriculture 4

Ranjan, Shivendu, Dasgupta, Nandita, Lichtfouse, Eric (Eds.), Springer, 2017.
Book2.png

In this book we present ten chapters describing the synthesis and application of nanomaterials for health, food, agriculture and bioremediation. Nanomaterials, with unique properties are now being used to improve food and agricultural production. Research on nanomaterials is indeed revealing new applications that were once thought to be imaginary. Specifically, applications lead to higher crop productivity with nanofertilisers, better packaging, longer food shelf life and better sensing of aromas and contaminants. these applications are needed in particular in poor countries where food is scarce and the water quality bad. Nanotechnology also addresses the age old issue of water polluted by industrial, urban and agricultural pollutants. For instance, research produces nanomaterials that clean water more efficiently than classical methods, thus yielding water for drinking and irrigation. However, some nanomaterials have been found to be toxic. Therefore, nanomaterials should be engineered to be safe for the environment.

3 Nanoscience and Plant–Soil Systems

Ghorbanpour, Mansour, Manika, Khanuja, Varma, Ajit (Eds.), Sepringer, 2017.
Book1.png

This book provides in-depth reviews of the effects of nanoparticles on the soil environment, their interactions with plants and also their potential applications as nanofertilizers and pesticides. It offers insights into the current trends and future prospects of nanotechnology, including the benefits and risks and the impact on agriculture and soil ecosystems. Individual chapters explore topics such as nanoparticle biosynthesis, engineered nanomaterials, the use of nanoclays for remediation of polluted sites, nanomaterials in water desalination, their effect on seed germination, plant growth, and nutrient transformations in soil, as well as the use of earthworms as bioremediating agents for nanoparticles. It is a valuable resource for researchers in academia and industry working in the field of agriculture, crop protection, plant sciences, applied microbiology, soil biology and environmental sciences.

4 Luminescence in Electrochemistry

by Miomandre, Fabien, Audebert, Pierre (Eds.), Sepringer, 2017.
Vol.6.png

This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.

http://www.springer.com/gp/book/9783319491356#otherversion=9783319491370

5 Fluorescence Microscopy: From Principles to Biological Applications, 2nd Edition

by Ulrich Kubitscheck, Wiley, June 2017.
Vol.7.png

While there are many publications on the topic written by experts for experts, this text is specifically designed to allow advanced students and researchers with no background in physics to comprehend novel fluorescence microscopy techniques. This second edition features new chapters and a subsequent focus on super-resolution and single-molecule microscopy as well as an expanded introduction. Each chapter is written by a renowned expert in the field, and has been thoroughly revised to reflect the developments in recent years.
Table of Contents

  • Introduction
  • Principles of Light Microscopy
  • Fluorescence Microscopy
  • Fluorescence Labeling
  • Confocal Microscopy
  • Fluorescence Photobleaching and Photoactivation Techniques
  • Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging
  • Multi-Photon Excitation
  • Single Molecule Microscopy in the Life Sciences
  • Super-Resolution Microscopy: Interference and Pattern Techniques
  • STED Microscopy
  • Light Sheet Fluorescence Microscopy
  • Appendix A: Practical Guide to Optical Alignment
  • Appendix B: Matrices and Images
  • http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527338373.html